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LESSON 25 – RANGING AND RESOLUTION 
(Problem Set 3 due; Pick up Problem Set 4) 
Last lesson we saw that pulse width was ultimately the limiting factor in target range resolution.  
We now investigate several techniques for overcoming that limitation. 
 
Reading: 

Stimson Ch. 13 (pp. 163-169), Ch. 14 (exclude sections on ghosting) 
Problems/Questions: 

Finish Problem Set 3 
Objectives: 

25-1 Understand the concept of “chirp”. 
25-2 Be able to calculate the range resolution of a chirped pulse. 
25-3 Understand how range can be indirectly measured through linear FM modulation 

of the radar signal. 
25-4 Be able to calculate target range using FM ranging techniques. 

 

 
Last Time: Ranging Schemes 
  Resolution 
  Signal Strength/Noise 
  Ambiguities (PRF Jittering/PRF Switching) 
 
Today: Ranging Schemes 
  Chirp/Pulse compression 
  FM Ranging 
 
Equations:  R = c(∆F1 + ∆F2)/(4*slope) for FM Ranging 
 
 
What was better, short or long pulses?  Why? 
 
Why don’t we make our pulses EXTREMELY short? 
 Not enough energy in the return to be discernible above the noise. 
 
Our problem:  we need short pulse widths for range resolution but are 
limited by our equipment to longer pulse widths to get enough energy in the 
signal to be detectable. 
 
Explain filters (show a colored filter set as an example). 
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Filters take information containing a huge number of frequencies and only 
allow specific frequencies to pass.  Perfect filters only allow 1 frequency out 
(but the power 
out of such a 
filter would be 
infinitesimally 
low). 
 
 
 
Imagine a pulse that 
continuously increases the 
frequency of its carrier 
throughout its width.  This is 
called a CHIRPED signal, since 
it sounds like a bird chirping. 
 
 
 
If the return in passed through a 
set of filters that have different 
delay times, we can rearrange 
this pulse.  Let’s look at a filter 
with a delay response like the 
following figure: 
 

 
 
Low frequency = long delay, high frequency = no delay. 
 
Instead of looking at a single pulse, it’s easier to visualize a “step-pulse” and 
a “step-filter” like the following figures: 
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As this pulse passes through this filter, f6 shows up first and is delayed 
longest, followed by f5 which is delayed a little less, and so on until f1 shows 
up and is not delayed at all. 
 
What is the output of this filter?  We now have a high amplitude, short width 
pulse.  What is this pulse’s resolution?  ½ the pulse width, right?  So our six 
unit width pulse has a resolution of 3 units?  Not quite.  Look at the 
following figure and you’ll see that the resolution is really half of the 
compressed pulse width. (this figure only show the return after it has 
reflected off of the target.  That’s why it looks like resolution is the whole 
compressed pulse width) 
 
Show Chirp.avi 
 
Now what is our limit on resolution?  Our ability to make good, narrow band 
filters and the number of filters you are able to cram into the hardware, and 
also the resolution inherent in the wavelength of the radar. 
 
 
Let’s move on to FM Ranging. 
 
What happens to the unambiguous range as the PRF goes up?  It goes down 
(Ru = cT/2 = c/2prf) 
 
In order to resolve ambiguities, you need to start adding different PRFs, 
which makes the radar system more and more complex.  If the PRF is high 
enough, it becomes too complicated to resolve at all.  Why do we need to do 
this high PRF stuff?  As we’ll see later, high PRF => lots-o-range 
ambiguities, but it also minimizes Doppler ambiguities.  The bottom line, if 
you really want to know how fast something’s going, you need a really high 
PRF. 
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What’s the limit of 
high prf?  
Continuous waves.  
But earlier we said 
that we needed to 
pulse the radar to 
get range 
information.  
That’s not exactly 

true.  It’s just the simplest way to do it, especially when we already need to 
share the antenna.  Another way to get range information exists that uses a 
quasi-CW signal and sweeps the frequency, similar to the chirped signal we 
looked at earlier. 
 
 
 
 

If we look in detail at one 
pulse and its return, we can 
see from geometry that 
∆f/∆t = ∆F/∆T, so ∆T = 
∆F(∆t/∆f).   
 
But from our range 
equation, R = c∆T/2 = 
c[∆F(∆t/∆f)]/2, but ∆f/∆t is 
just the slope, so the final 
equation becomes 
R = c∆F/(2*slope). 
 

 
But what if the target is moving?  Then we’ll have to do a double sweep of 
the frequency.  From the following diagram, we see that ∆t/∆f = slope = 
(∆F1+fd)/tr = (∆F2 - fd)/tr 
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So 
 
tr(slope) = DF1 + fd 
tr(slope) = DF2 - fd 
 
2tr(slope) = DF1 +DF2 
 
tr = (DF1 +DF2)/2slope 
 
R = ctr/2 
 
R = c(DF1 +DF2)/4slope 
 
Does this work for a non-moving target?  Sure. 
 


